Рис. 12. Общая схема системы питания и системы выпуска отработавших газов: 1 - топливный бак; 2 - топливопровод; 3 - топливный насос; 4 - фильтр очистки топлива; 5 - глушитель, 6 - выпускной коллектор; 7 - цилиндр двигателя; 8 - впускной коллектор; 9 - карбюратор; 10 - воздушный патрубок; 11 - фильтр очистки воздуха.
Как видно из самого названия, система питания как бы «питает» двигатель, т.е. снабжает его рабочей смесью и удаляет полученные после ее сгорания отработавшие газы.
Сначала поясню, что такое «рабочая смесь». Рабочая смесь - смесь бензина и воздуха. Сам бензин не горит, горит только смесь его паров с воздухом. Так вот, для нормального сгорания смеси она должна состоять из 15 частей воздуха и 1 части паров бензина, условно это будет 15:1.
Если количество воздуха будет 15-17 частей, то мы имеем обедненную смесь. При дальнейшем увеличении количества воздуха смесь будет называться бедной и при содержании воздуха более 21 части гореть не будет. Если же у нас, наоборот, будет уменьшаться содержание воздуха в смеси, то она будет обогащаться. При концентрации воздуха 15-13 частей смесь будет обогащенной, при 13-5 частях — богатой, а при содержании воздуха менее 5 частей — вообще не горит.
Рассмотрим внимательно общую схему системы питания карбюраторного бензинового двигателя, которая состоит из топливного бака, топливопроводов, топливного насоса, фильтра очистки топлива, воздушного патрубка, фильтра очистки воздуха, карбюратора, впускного коллектора, выпускного коллектора и системы глушения шума выпуска отработанных газов.
Стрелками указаны направления движения компонентов рабочей смеси и отработанных газов. Так, бензин поступает из топливного бака через топливный насос и фильтр в карбюратор. Воздух из атмосферы через воздушный фильтр по патрубку также подается в карбюратор. Из карбюратора рабочая смесь через впускной коллектор и клапан подается в цилиндр двигателя, где и происходит сгорание. А продукты сгорания — отработанные газы через выпускной клапан, выпускной коллектор и систему глушения шума выбрасываются в атмосферу.
А теперь подробно рассмотрим назначение, принцип работы и устройство каждого из перечисленных узлов системы питания.
Топливный бак
Начнем по порядку, с топливного бака.
Топливный бак служит для хранения запаса топлива, необходимого для работы двигателя.
Это резервуар, изготовленный из тонколистового металла или пластмассы. Форма его самая разнообразная. Основное место расположения — под днищем автомобиля.
Емкость бака, т.е. количество заливаемого в него топлива, тоже разная. Ее выбирают при проектировании автомобиля в зависимости от многих параметров. В среднем емкость топливного бака должна обеспечивать пробег автомобиля 450-550 километров без дополнительных заправок. Рассмотрим подробнее конструкцию топливного бака (рисунок 13).
Рис. 13. Топливный бак: 1 - заливная горловина; 2 - стенки бака; 3 - трубка забора топлива с фильтром; 4 - сливное отверстие с пробкой, 5 - поплавок датчика указателя уровня топлива; 6 - уровень топлива; 7 - вентиляционная трубка; 8 - датчик уровня топлива.
Про стенки бака мы уже сказали несколько слов. В верхней боковой части бака имеется заливная горловина с пробкой, через которую на автозаправочных станциях, или сокращенно АЗС, в бак заливается топливо. Для слива топлива внизу расположено сливное отверстие, надежно закрытое резьбовой пробкой. Топливо через трубку с сетчатым фильтром поступает в топливную магистраль, питающую двигатель.
А следить, сколько осталось запаса топлива в баке, помогает нехитрый прибор —указатель топлива, датчик которого и находится в баке. Датчик представляет собой обычный поплавок, жестко закрепленный на длинном поводке. В зависимости от положения поплавка, а следовательно, и поводка изменяется электрический сигнал, поступающий от датчика к указателю, расположенному на щитке приборов, и водитель видит, сколько имеется топлива в баке.
Про топливный фильтр много не расскажешь. Он представляет собой маленький цилиндр, в котором находится пористый фильтрующий материал. Чистый бензин проходит через многочисленные поры, а различные примеси остаются.
Топливный насос
Как ты сам понимаешь, топливо по топливопроводу само по себе не потечет. Чтобы придать ему движение, необходим насос. Он и имеется в системе питания.
Топливный насос выкачивает топливо из бака и создает необходимое давление в топливопроводе.
Рассмотрим схему работы топливного насоса карбюраторного двигателя (рисунок 14).
Рис. 14. Схема работы топливного насоса: а - впуск; б - выпуск.
Как видно из рисунка, главная рабочая деталь топливного насоса — диафрагма. Это как бы поршень, с помощью которого порции топлива перекачиваются из одной полости насоса в другую. Управляет движениями диафрагмы толкатель. Он ее то поднимает, то опускает. Когда диафрагма опускается, под ней создается разрежение, и топливо, открывая клапан, заполняет нижнюю полость насоса. Когда диафрагма поднимается — она выталкивает топливо из нижней полости в трубку, создавая в ней давление. Диафрагма приводится в действие специальным устройством двигателя.
Так что при увеличении оборотов двигателя автоматически увеличивается скорость движения диафрагмы и, как следствие, количество топлива, подаваемого из бензобака в магистраль — так необходимого для поддержания этих повышенных оборотов.
Имеется еще рычаг ручной подкачки топлива. Когда двигатель не работает, можно подкачать топливо вручную с помощью данного рычага. Рычаг ручной подкачки непосредственно связан со штоком диафрагмы. Поэтому, нажимая на рычаг, мы заставляем перемещаться диафрагму.
Карбюратор
А сейчас мы подробно ознакомимся с самым главным и сложным узлом системы питания — карбюратором.
Название «карбюратор» происходит от слова «карбюрация», то есть процесс приготовления рабочей смеси, а именно этим и занимается карбюратор.
Надо сказать, что нелегкая у него работа. Ведь двигатель, как капризный ребе -нок, все время требует различной «пищи», то есть разного состава рабочей смеси. На рисунке 15 изображен простейший карбюратор.
Рис. 15. Простейший карбюратор: 1 - воздух; 2 - топливо; 3 - игольчатый клапан; 4 - поплавок; 5 - поплавковая камера; 6 - распылитель, 7 - топливный жиклер; 8 - смесительная камера; 9 - рабочая смесь, 10 - дроссельная заслонка; 11 - диффузор.
Как видно из общей схемы системы питания, карбюратор расположен своей нижней частью на впускном коллекторе двигателя, то есть в непосредственной близости от цилиндров. Сверху в карбюратор поступает воздух, предварительно очищенный от пыли и грязи воздушным фильтром, а сбоку — бензин, подаваемый топливным насосом из бензобака.
Воздушный фильтр — обязательная деталь любой системы питания. Мы уже не раз говорили, что воздух для приготовления рабочей смеси должен быть чистым. Однако окружающий автомобиль воздух чистотой не отличается, особенно в сельской местности, где много песка и пыли. Песок — злейший враг всех деталей двигателя. При попадании внутрь он, как абразивная шкурка, стирает трущиеся поверхности деталей.
Поэтому воздушный фильтр — это не последняя деталь системы питания. Как правило, в современных двигателях применяют сменные фильтрующие элементы из пористой бумаги. Воздух, проходя через ее поры, оставляет на них песчинки, пыль и грязь. Фильтрующий элемент периодически меняется вместе со всеми осадками. Мыть бумажный элемент нет смысла, поэтому его просто меняют.
Бензин тоже проходит очень тщательную очистку. На первой стадии он очищается сеткой, которая имеется на приемной трубе бензобака, затем за дело берется сетчатый фильтр в топливном насосе, и, наконец, процесс очистки завершает фильтр тонкой очистки топлива, расположенный между насосом и карбюратором. Но и это еще не все. На карбюраторе имеется еще один сетчатый фильтр. Такой сложный многоступенчатый процесс очистки топлива необходим потому, что мельчайшая песчинка может засорить очень маленькие отверстия в карбюраторе. Поэтому он должен быть очень чистым, без сора.
А сейчас рассмотрим работу простейшего карбюратора, изображенного на рисунке 15. Во время такта впуска поршень в цилиндре перемещается вниз, и через открытый впускной клапан, как насосом, «затягивает» в цилиндр рабочую смесь. Так вот, «затягивается» она как раз из карбюратора, а точнее, из смесительной камеры карбюратора. Смесительной потому, что именно в ней топливо смешивается с воздухом. В нижней ее части установлена заслонка. Она может закрывать и открывать выход из смесительной камеры. Дроссельная заслонка тягой соединена с педалью «газа», расположенной под ногами водителя. Нажимая на эту педаль, водитель регулирует количество поступающей в цилиндры рабочей смеси. При открытой дроссельной заслонке через смесительную камеру проходит воздух. Воздух, проходя мимо распылительной трубки, или жиклера, захватывает с собой частички топлива, которые, интенсивно испаряясь в смесительной камере, образуют горючую смесь.
Казалось бы, все просто. Но это не так. Нарисованный карбюратор — простейший. Такой карбюратор исправно работает только при равномерном установив шемся движении автомобиля. А это только лишь очень малое время эксплуатации автомобиля. А теперь рассмотрим все возможные варианты работы автомобильного двигателя с точки зрения состава рабочей смеси и, вследствие этого, работы карбюратора. А заодно и познакомимся с разными дополнительными устройства ми и системами карбюратора.
Процесс работы двигателя начинается с его запуска или заводки. Этот процесс называется «пуском холодного двигателя». Причем не работавший долгое время двигатель считается «холодным» независимо от времени года, даже жарким летом, а зимой — особенно. Заглянем как бы внутрь двигателя в этом состоянии и посмотрим, что же там происходит и что требуется от карбюратора, чтобы двигатель сразу заработал.
Во-первых, из-за того, что стартер вращает коленчатый вал двигателя с малыми оборотами, рабочая смесь поступает в цилиндр с маленькой скоростью.
Во-вторых, из-за того, что стенки цилиндра и впускной трубопровод холодные, на них в виде капелек оседает большая часть паров бензина, тем самым смесь обедняется, то есть количество топлива в ней уменьшается. Для быстрого запуска двигателя в карбюраторе имеется специальное пусковое устройство (рисунок 16).
Рис. 16. Пусковое устройство карбюратора: 1 - поплавковая камера; 2 - топливный жиклер; 3 - регулировочный винт; 4 - распылитель; 5 - воздушная заслонка; 6 - автоматический клапан с пружиной.
Из теории мы с тобой уже знаем, что, для того чтобы в названных выше нелегких условиях в рабочей смеси оставалось необходимое содержание парообразного топлива, его нужно подавать больше, с расчетом на то, что часть топлива осядет на стенках впускного трубопровода, то есть смесь должна быть богатой.
Давай рассмотрим, из чего же состоит система пуска. Из поплавковой камеры карбюратора топливо через главный топливный жиклер поступает в распылитель и канал холостого хода, в котором имеется топливный жиклер холостого хода. В верхней части расположена воздушная заслонка с автоматическим клапаном. Воздух поступает через канал холостого хода. Также имеются два отверстия, причем проходное сечение одного из них может регулироваться. И наконец, упомянем об уже известной дроссельной заслонке, управляемой педалью с рабочего места водителя.
Поплавковая камера карбюратора представляет собой ванночку, наполненную бензином. В ней плавает поплавок в виде маленького бочонка. Он соединен с краником. Когда уровень бензина понижается, поплавок открывает краник, и новый бензин заливается в ванночку. Таким образом поддерживается строго определенный уровень топлива в поплавковой камере. А вот в нижней части поплавковой камеры есть отверстие. Это — канал для топлива с главным топливным жиклером.
Немного о жиклерах. Жиклер — это маленький болтик с просверленным внутри отверстием. Отверстие в жиклере строго определенного диаметра, который рассчитывается при проектировании карбюратора. Любая система карбюратора не обходится без жиклеров. Жиклеры, хоть с виду и маленькие, невзрачные, но на самом деле необходимые детали карбюратора. Стоит попасть крошечной песчинке или волоску в один из жиклеров, и автомобиль резко меняется в «поведении»: то подолгу не запускается двигатель, то разгон «вялый», то просто автомобиль не может тронуться с места...
Частенько можно видеть на обочине дороги беспомощные автомобили с поднятыми капотами и водителей, озабоченно погрузившихся в содержимое моторного отсека и безуспешно пытающихся «возвратить к жизни» своего четырехколесного друга. А причина часто кроется в крохотном жиклерчике, который засорился и не может пропускать топливо или воздух.
А теперь дальше. Перед запуском двигателя водитель с помощью специальной кнопки с тросиком закрывает воздушную заслонку, уменьшая количество воздуха в смеси, и немного приоткрывает дроссельную. Затем стартер, напоминающий электромоторчик, подключенный к аккумуляторной батарее, начинает медленно вращать коленчатый вал. Под действием разрежения, создаваемого движущимся вниз поршнем, топливо вытекает в смесительную камеру. Но так как дроссельная заслонка закрыта, а разрежение выше ее мало, то через распылитель топлива вытекает мало, а основная часть поступает вверх по каналу через топливный жиклер холостого хода и далее, смешиваясь с воздухом, подается в пространство под дроссельную заслонку. Это происходит оттого, что при закрытой дроссельной и воздушной заслонках разрежение в нижней части смесительной камеры относительно велико. Как раз в это место и подается смесь для того, чтобы даже при столь малом разрежении частицы топлива все же дробились, испарялись и активно перемешивались с воздухом, образуя однородную рабочую смесь.
Как только в цилиндрах двигателя произошел процесс воспламенения смеси, и этот цилиндр совершил такт рабочего хода, на некоторое время, вследствие этого, повышаются обороты коленчатого вала. Чтобы двигатель не захлебнулся топливом, нужно добавить воздуха. Это делает автоматический клапан, установленный в воздушной заслонке. Он открывается и пропускает достаточно воздуха для работы холодного двигателя, впуская порцию воздуха и обедняя тем самым смесь.
Но по мере прогрева двигателя водитель вручную постепенно открывает воздушную заслонку. Когда воздушная заслонка открывается полностью, двигатель начинает работать тихо и ровно на оборотах холостого хода.
Как только двигатель прогрелся до рабочей температуры и заработал ровно и с малыми оборотами, система пуска передала его «из рук в руки» другой системе — системе холостого хода (рисунок 17).
Рис. 17. Система холостого хода: 1 - дроссельная заслонка, 2 - отверстия системы холостого хода; 3 - жиклер холостого хода; 4 - каналы; 5 - воздушный жиклер; 6 - регулировочный винт.
Сейчас мы опять рассмотрим условия в цилиндре двигателя и, как следствие, те функции, которые должна выполнять система холостого хода.
Коленчатый вал вращается медленно, в цилиндрах остается еще большое количество отработавших газов, которые не успевают покинуть его через выпускной клапан. Вследствие малого разрежения в цилиндре количество поступающей рабочей смеси невелико. Поступающая рабочая смесь, перемешиваясь с остатками отработавших газов, горит медленно, и вследствие этого двигатель работает неустойчиво. Надо увеличить скорость сгорания рабочей смеси, поступающей в цилиндр. А для этого необходимо сделать смесь обогащенной.
Вот этим-то и занимается система холостого хода, которая необходима для обеспечения работы двигателя при медленной скорости вращения коленчатого вала, когда водитель не нажимает на педаль «газа», и дроссельная заслонка закрыта. При этом через смесительную камеру карбюратора проходит слишком слабый поток воздуха, который не может заставить бензин вытекать из распылителя. Поэтому в карбюраторе есть канал, который обходит все двери-заслонки. В нем топливо смешивается с воздухом и вытекает сразу во впускную трубу. Количество поступающей смеси регулируется специальным винтом
Рассмотрим дальше процесс работы карбюратора. Двигатель заработал, прогрелся до рабочей температуры. Теперь — пора в путь. Автомобиль трогается с места и движется по хорошей дороге с невысокой скоростью. Нагрузка на двигатель средняя, и от него не требуется полной мощности.
Для его работы нужна экономичная смесь, которая должна быть обедненной Именно для этого и служит главная дозирующая система, схема которой изображена на рисунке 18.
Рис. 18. Главная дозирующая система: 1 - воздушный жиклер; 2 - распылитель, 3 - диффузор; 4 - топливный жиклер; 5 - дроссельная заслонка.
Двигателю достаточно того топлива, которое захватывает с собой воздух, проходя через смесительную камеру. Пока автомобиль едет с одной и той же скоростью, смесь обедняется — топлива в ней мало.
Иногда необходимо резко увеличить скорость автомобиля или разогнаться. Для быстрого увеличения оборотов в карбюраторе установлен насос-ускоритель (рисунок 19).
Рис. 19. Насос-ускоритель: 1 - шток; 2 - планка; 3 - колодец; 4 - пружина; 5 - поршень, 6 - обратный клапан; 7 - тяга; 8 - рычаг; 9 - дроссельная заслонка; 10 - нагнетательный клапан; 11 - распылитель.
При резком открытии дроссельной заслонки в момент увеличения нагрузки смесь обедняется, и двигатель может остановиться. Резкое обеднение смеси объясняется тем, что в этот момент истечение топлива из жиклеров отстает от возрастающего воздушного потока. При резком открытии дроссельной заслонки рычаг быстро опускает тягу привода насоса вниз. Тяга с планкой нажимает через пружину на шток с поршнем, который, резко опускаясь, давит на топливо. Обратный клапан под давлением топлива закрывается, и топливо, поднимая нагнетательный клапан, через распылитель впрыскивается в смесительную камеру, не допуская этим обеднения смеси. Двигатель быстро набирает необходимые обороты.
А теперь поехали дальше. На пути нашего автомобиля встретилась горка, на которую необходимо въехать. От двигателя требуется уже полная отдача. И тут на помощь главной дозирующей системе приходит экономайзер.
При движении в горку от двигателя требуется большая мощность, чем на ровной дороге. Так вот это достигается увеличением количества рабочей смеси и ее обогащением, т.е. увеличением количества в ней топлива. Такой состав смеси еще называют «мощностным» составом, от слова «мощь», «сила».
При открытии дроссельной заслонки почти полностью топлива, накачанного насосом-ускорителем, не хватает, и вступает в работу экономайзер. Водитель сильнее нажимает на педаль «газа», рычаг, закрепленный на оси дроссельных заслонок, через серьгу и тягу перемещает шток привода вниз. Шток нажимает клапан экономайзера, и дополнительное топливо из поплавковой камеры через отверстие, открытое клапаном, и жиклер экономайзера поступает по каналу, дополняя топливо, вытекающее из главного топливного жиклера, прямо в смесительную камеру карбюратора. Таким образом, в смесительной камере оказывается большее количество топлива, которое, смешиваясь с воздухом, образует обогащенную рабочую смесь, так необходимую для движения при возросших нагрузках.
Таким образом, мы рассмотрели в отдельности устройство и работу всех устройств карбюратора. Однако на этом наше знакомство с устройством системы питания не заканчивается.
Система питания с впрыском топлива
Хочется сделать еще одно небольшое дополнение. На современных автомобилях все большее применение находят не карбюраторные, а впрысковые двигатели. Общие теоретические правила относительно режимов работы и состава горючей смеси остаются теми же, что и для карбюраторного двигателя. Изменяется только принцип и механизм приготовления рабочей смеси. Немного остановимся на принципах их работы. Электрический насос находится в топливном баке. Это насос высокого давления, который охлаждается бензином. Насос накачивает бензин в топливную рампу.
Топливная рампа — это трубопровод, в котором поддерживается достаточно высокое давление.
Непосредственно на рампе расположены форсунки, которые впрыскивают топливо во впускную трубу каждого цилиндра Воздух, поступающий в двигатель, проходит через датчик массового расхода воздуха. Затем эти данные поступают на бортовой компьютер. Одновременно туда же поступают от датчиков сведения о работе двигателя: температура двигателя, температура поступающего воздуха, скорость вращения коленчатого вала, степень открытия дроссельной заслонки. Компьютер, обработав все это, определяет, какое количество топлива нужно сжечь в этом количестве воздуха. Работу бортового компьютера можно сравнить с мозгом человека. Условно это изображено на рисунке 20.
Рис. 20. Принцип работы бортового компьютера
С впрысковой системой питания водитель, нажимая на педаль «газа», управляет только потоком воздуха, поступающего в двигатель. Необходимое количество топлива рассчитывает и подает сама система впрыска, изменяя продолжительность открытия форсунки. Затем этот сигнал передается на клапан форсунки, который открывается и впрыскивает нужное для сгорания количество топлива. Форсунка по назначению напоминает водопроводный кран. Чем он дольше открыт, тем больше топлива выльется в цилиндры из рампы. Таким образом мы можем уменьшать или увеличивать количество топлива в смеси и регулировать мощность двигателя.
Общая схема системы впрыска показана на рисунке 21.
Рис. 21. Общая схема системы питания с впрыском топлива: 1 - сливная магистраль, 2 - подающая магистраль, 3 - топливный бак; 4 - электрический бензонасос; 5 - топливный фильтр; 6 - глушитель, 7 - нейтрализатор газов; 8 - регулятор давления; 9 - топливная рампа; 10 - форсунки; 11 - цилиндр двигателя; 12 - впускной коллектор; 13 - выпускной коллектор; 14 - дроссельный узел; 15 - воздушный фильтр.
Как ты догадался из описания, система впрыска готовит более качественную рабочую смесь. Двигатель получается более мощным, менее токсичным, то есть выбросы вредных веществ в атмосферу сведены до минимума. Автомобиль, оснащенный двигателем с системой впрыска топлива, более динамичен, расход топлива невелик. Однако, несмотря на все эти положительные моменты, есть и отрицательные. Значительно усложняется управление системой питания. В автомобиле появляется множество электронных устройств: бортовой компьютер, множество датчиков. Все это требует тщательной настройки и правильной эксплуатации.
Система выпуска отработавших газов
Рабочая смесь, сгорев в цилиндре двигателя, превращается в отработавшие газы и в такте выпуска удаляется из цилиндра двигателя. Что же дальше? Отработавшие газы имеют очень высокую температуру, и их выход из цилиндра сопровождается оглушительным шумом. К тому же выхлопные газы содержат много вредных для человека примесей.
Чтобы снизить шум и токсичность (содержание вредных примесей), в автомобильном двигателе установлена система выпуска.
Сразу же после цилиндра выхлопные газы попадают в выпускной коллектор, а затем — в приемную трубу глушителя. Часто между ними устанавливается нейтрализатор, который, как фильтр, снижает вредные примеси. Далее выхлопные газы проходят несколько камер глушителя шума и выходят в атмосферу. Их температура уже ниже. Шум значительно снижается за счет того, что внутри камер глушителей есть несколько трубок с отверстиями. Поток газов, проходя через лабиринты отверстий, теряет свою энергию и, как следствие, шум.
Ну вот теперь ты сможешь смело сказать, что познакомился с системой питания двигателя.